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LE'ITER TO THE EDITOR 

Generalized q-fermion oscillators and q-coherent states 
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t Department of Physics, Simon Fraser University, Bumaby, BC VSA 1S6, Canada 
t The Institute of Mathematical Sciences, Madras 600113, India 

Received 25 November 1991 

Abstract. The algebra of q-fermion operators, developed earlier by two of the present 
authors is re-examined. It is shown that these operators represent panicles that are distinct 
from usual spacetime fermions except in the limit q = 1. It is shown that it is passible to 
introduce generalized q-oscillators defined for -CO< q S  1. In the range -m< q <O, these 
coincide with the q-boson operaton and for 0 < q s 1 they coincide with q-fermions. The 
ordinary bosons and fermions may be identified with the limits q = -I and C l  respectively. 
Generalized q-fermion wherent states are constructed by utilizing a nonlinear shift 
automorphism ofthe algebra of q-fermion operaton. n e s e  are compared whh the coherent 
states defined as cigenstates of annihilation operator. Matrix elements of the shift operator 
in the Fock space basis are evaluated. 

Much attention has been focused recently on the algebra of q-boson oscillators [ l ,  21. 
It has been conjectured that these oscillators perhaps play the role of the ordinary 
harmonic oscillators at Planck length scale [2]. The q-boson operator algebra has been 
used as a tool for constructing the highest weight representations of SUJ2) [ l ,  21 and 
other quantum groups. q-boson coherent states have been studied in [3,4]. These 
coherent states show interesting squeezing properties. 

It is natural to investigate the properties of q-fermion oscillators. Two of the present 
authors [5] proposed an algebra of q-fermion creation and annihilation operators of 
the form 

ff:+fif:fq = q-Nf'2 (1) 
where the number operator N,( Z f i f , )  satisfies 

[N,. f:I =f: [N,f,I = -f,. 
It was shown in [5] that for O <  q c: 1 any number of q-fermions can occupy a given 
state in contrast to the case of ordinary fermions. It was further shown that when q = 1, 
the nilpotency relationsf:_, = O,fE, = O  are realized in the weak sense; i.e.f2)n), = 0; 
(f')Zln)F = 0, where In)F spans the fermion Fock space, thereby reducing to the usual 
fermion operators when q = 1. The above algebra of q-fermions was used in [5] to 
construct the q-superalgebra of the supersymmetric oscillator and its irreducible r e p  
resentations. Recently, q-fermion operator algebra given by (1) and (2) has been 
derived by a Wigner-lnonu type contraction of the superalgebra Osp( 1/2) [6]. It can 
also be derived from the SU,,,(2) algebra [7] by taking the limit p = -4. There is an 
n I t ~ m . t ~  vn.rinn nf n-ferminn. which m n  hP n h t a i n d  frnm SI (I /I 1161 hv m n t n o t i A n  

This results in the following anticommutation relations. 
I ..-... " , ~  ."."." ..-. .I .-.....-.. I ---I .- t.. "_.._ ... I. ~ ~ - ,  -,I -,-, "_.."... 

(3) 
a,a:+qaLa,=q +N 

a: = ar=o [N, a;]= a: [ N , a , ] = - a , .  (4) 
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Note the sign of the exponent in qN. By making the transformation [SI 

a - a& ( 5 )  

(6)  

t -  t -NI2 a = q-N/2  a, 

a2 = at2 = 0 

the equations (3) and (4) reduce to 

[ N, a'] = a' [ N, a] = -a. aa '+a+a=l  

The algebra of ( 6 )  of operators a, at, and N is the Heisenberg algebra of ordinary 
fermions and thus equations (3) and (4) do not constitute a generalization. In view of 
the fact that a number of authors have discussed properties of q-oscillators based on 
(3) and (4), it is important to point out that the generalization via equations (1) and 
(2) is not only non-trivial but provides at the same time a scheme for unifying q-boson 
and fermion oscillators in terms of generalized q-oscillators. 

Equations (1) and (2) allow, for O<q<  1, any number of q-fermions in a given 
state. It therefore seems reasonable to expect no fundamental difference between the 
q-fermions and q-bosons. To see the connection between these operators, let us define 
in equations (1) and (2) the following transformations: 

f ,  = q-N/4F f: = FtKNI4 (7) 
(we have dropped the suffix on the number operator N ) .  The basic anticommutation 
relations now hecome 

FF'+qF'F= 1 (8) 

[N, F'] = F' [ N, F] = -F. (9) 

FF'-F'F= ( - q ) N .  (10) 

Equivalently one may introduce the number operator N by 

We shall show, below, that q in (8) must be taken to be real and in the range 0 < q < 1, 
in order to be able to construct a Fock space based on the vacuum IO),; FIO)F = 0 for 
these oscillators. Iterating (8 ) .  we arrive at the formula 

F(F')" - ( - q ) " ( F ' ) " F = [ n ;  q]F(F')"-' (11) 

L n ;  qlF=[ l  -(-q)nl/(l+q). (12) 

where 

Defining the vacuum state IO), by FIO)F = 0; we can construct normalized n q-fermions 
state by 

where 

[n;qlF!=[n;qlF[n-l;q]F ...[2;qlF[l;ql,. (14) 

It is readily checked that 

F / ? ! ; q ) F = . . m : ? ! - l ; q ) F  (15) 

F'ln; q ? F = m l n + l ;  q)F. (16) 

It can be seen from the definition (11) of [n; qIF that for q >  1 [ n ;  qIF is negative for 
even values of n, in which case the norm of the Fock space vectors In; q ) F  is ill-defined. 
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Thus we take 0 < q 6 1. Furthermore, it can be seen from (14) and ( 1  1) that when 
q +  l(F')"IO), =-In; q)F = O  for n > 1. On the other hand for q # 1, it is easy 
to see from the iteration formula (10) that imposing (Ft )"  = O  for n >  1 leads to 
inconsistencies. 

Recall that the q-boson operators A, A' satisfy the following commutation relations 

A,A:- qA:A, = 1 (17) 

an: 

[ N E , A : I = A :  [ N E .  A41 = - A  9 

where q in (17) is taken to be positive and O <  q<m. Ns, in the above, is the boson 
number operator. We formally extend relations (8) and (9) to negative values of q. 
For -m < q < 0, change q to -4 and redefine F-, = A,,. We then obtain the commutation 
relations (17) with q > 0. Thus, we may define generalized q-oscillators by (8) and (9) 
in the interval -m < q s 1 such that they represent q-bosons for -a < q < 0, while they 
represent q-fermions for 0 < q s 1. 

We now construct q-fermion coherent states (~FCCS) .  Klauder and Skagerstam [9] 
define, for the ordinary (q  = 1) fermions, coherent state I$) as 

I$)=ex~[$a'-a+'llo) (18) 

where + and $' are anticommuting Grassmann variables (i.e. $$'++'+ =O; $'=O= 
$"). This construction is based on the existence of shift automorphism of the algebra 
of creation and destruction operators. Denoting by D(+) 

D(+)  =exp(+a'-a$') (19) 

we find 

D($)aD'(@)= a -+. (20) 

For qFcs it is clear from ( 1 )  or (8) that simple shift does not preserve the basic 
anticommutation relation. Zhedanov [ 101 has recently constructed a nonlinear shift 
automorphism for q-bosons. This method can be adapted for q-fermions. We shall 
construct qFcs using pseudo-Grassmann variables, which in the limit q = 1 reduces to 
ordinary fermion coherent states. Let us define nonlinear shift operators C ( $ )  and 
C'($) by 

C ( $ )  = F[1- ( - q ) N ~ ] ' / 2  - Jls (21) 

(22) 

C($)C'($)+qC'($)C($)  = 1. (23) 

In (22), $, $' are taken as pseudo-Grassmann variables. By this we mean that 
$$'+ $'$ = 0; but $ and $' are not nilpotent; $" # 0, (+I)" # 0. Further + and $ti are 
taken to anticommute with F and F'; but commute with the number operator N. 

Astraightforward computation shows that C ( $ )  and C'($)  define an automorphism 
of the algebra (8); that is they satisfy equation (23). provided we take 

w = $t$( l -q) /q .  (24) 

Note that when q + l ,  C ( $ ) + F - $  and C'($)+F'-$';  reproducing the auto- 
morphism of the algebra of ordinary fermions. 

1/2 t -  t N C t ( $ ) = [ l - ( - q ) N ~ l  F $ 4 

where w is a c-number, to be determined by requiring 
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There should thus exist a unitary operator U(+)  that maps F into C ( + ) :  

U(+)FU'(+)  = C ( + )  (25) 

U(+)F'U'(+)  = C'(+). (26) 

IJh = U(+)lO), C(+)IJ), =o. (27) 

C(-+)lO), = +IO), (28) 

We now define ~ F C S  by 

Now, from definitions (21) and (22) we have 

then IO), may be interpreted as a q-coherent state of C(-+). Substituting ( 2 5 )  in (28) 
we find 

FUt(-$)IO), = Wt(-+NOq. (29) 
Thus the state U'(-+)/O), is a q-coherent state in the sense of being the eigenstate of 
the annihilation operator F. Note that U t ( - + )  # U(+) ,  and hence the coherent state 
Ut(-+)lO)q is not identical to the coherent state I&,. Let us define I$), = Ut(-+)IO),. 
It is, in fact possible to construct the state I+), directly, by following the procedure 
used for q-bosons. We shall show that the normalized state 

I+), = (expq(+t+)-"2 exp,(-+F')IO), (30) 

is given by 

where 

[ n ;  q l F !  is defined in (12). The q-exponential defined in [31) is seen to be uniformly 
and absolutely convergent for q < 1 with a radius of convergence R = 1/( 1 + 9). It is 
possible to re-define a q-exponential function, e,(x), that is convergent for q < 1 for 
all values of x. Using the anticommuting properties of +, it is easily shown that 

F1+04 = +I+),. (32) 
Finally one can determine the matrix elements of U t ( $ )  in the Fock space. We 

derive a recursion formula by calculating the matrix element (ml(-q)NU'($)ln)  in 
two ways. Now 

(ml(-q)Nu'(+)ln) = (-q)'"Uk.. = ( - l ) " x ( m )  U;," (33) 

x(m) = e-Ym q = e--(o > 0). (34) 

(ml(-q)NU'($)ln)=(mlU'($)U(+)(-4)NUt(+)ln) 

where 

On the other hand from equations (10) and (25), we have 

= (mlu'($)(cc'- C'C)In) 

= g. U;,,, + d. U:,.-, +' + d n + i  UL+i  Ilr 
where 

d. =(-q)" - ' [ (  1 - w(-q)")( l  -(-q)")(l  +q)11'2. 
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In arriving at ( 3 9 ,  we have made use of the following properties of $: we take $ to 
commute with IO), 

$lo), = lo),$ (37) 

then 

$(F')"IO)F = (-l)"(F')"IO).=$. (38) 

It is seen from (33) and (35) that one can express U:,.($)+" in the form 

ULA$)$" =(ml ut($)lo)cn(x(m)) (39)' 

where C. (x (m) )  is a system of orthogonal polynomials of the discrete argument 
x(m)-exp(-om). The orthogonality properties of C. (x (m) )  arise as a consequence 
of unitarity of U'($). 

m 

E w,C.(x(m))CAx(m))  = ($'$)"&,... (40) 
m=0 

The weight function W, for these polynomials has the form 

w, = I(mlU'($)IO)12 

These polynomials are not identical to the ones for q-bosons. It will be of interest to 
investigate in detail the properties of these polynomials. 

This work has been supported in part by an operating grant from Natural Sciences 
and Engineering Research Council of Canada. We thank Dan Kay for useful comments. 
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